Adriamycin release from poly(lactide-co-glycolide)-polyethylene glycol nanoparticles: synthesis, and in vitro characterization
نویسندگان
چکیده
The preparation, properties, and application in adriamycin delivery ofbiocompatible and biodegradable poly(lactide-co-glycolide)-polyethylene glycol (PLGA-PEG) nanoparticles are discussed. PLGA-PEG copolymers were synthesized by ring opening polymerization of the dl-lactide and glycolide in the presence of PEG1000. 1H-NMR and FT-IR spectrum were consistent with the structure of PLGA-PEG copolymers. The adriamycin-loaded nanoparticles could be prepared using a precipitation-solvent evaporation technique. The nanoparticles have been produced by a precipitation-solvent evaporation technique. The physical characteristics and drug loading efficiency of the PLGA-PEG nanoparticles were influenced by the composition of the PLGA-PEG copolymers used to prepare the nanoparticles. Particle sizes were between 65 and 100 nm for different compositions of PLGA-PEG copolymers. PLGA-PEG nanoparticles prepared from copolymers having relatively high PLGA/PEG ratios were smaller. Entrapment efficiency was 25%-33%. Adriamycin release from the nanoparticles at pH 7.4 showed an initial burst release and then sustained release phase. These results showed that PLGA-PEG nanoparticles could be an effective carrier for cancer therapy.
منابع مشابه
Nanoparticles of Poly(Lactide-Co-Glycolide)-d-a-Tocopheryl Polyethylene Glycol 1000 Succinate Random Copolymer for Cancer Treatment
Cancer is the leading cause of death worldwide. Nanomaterials and nanotechnologies could provide potential solutions. In this research, a novel biodegradable poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) random copolymer was synthesized from lactide, glycolide and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by ring-opening polymerization u...
متن کاملDesign of vitamin E d-α-Tocopheryl Polyethylene Glycol 1000 Succinate-Emulsified Poly (D,L–Lactide–co-Glycolide) Nanoparticles: Influence of Duration of Ultrasonication Energy
The aim of this research was to investigate the effect of the duration of ultrasonication energy on the physicochemical characteristics of the nano-sized particulate drug delivery systems. For this purpose, meloxicam-loaded vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-emulsified poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles were designed by using ultrasonication-sol...
متن کاملAnticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation
Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...
متن کاملAnticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation
Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio ...
متن کاملPreparation and Characterization of Estradiol Valerate Microspheres Using Biodegradable Polymers
In this study, microspheres containing estradiol valerate were prepared by solvent evaporation method using poly (glycolide-co-lactide) (PLGA 50:50) and poly (lactide). The effect of different process variables such as polymer type, drugpolymer ratio, stirring rate, volume of internal phase and temperature of external phase on the morphology, particle size distribution, encapsulation effic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Nanomedicine
دوره 1 شماره
صفحات -
تاریخ انتشار 2006